Verification of a Multimodel Storm Surge Ensemble around New York City and Long Island for the Cool Season

Author:

Di Liberto Tom1,Colle Brian A.1,Georgas Nickitas2,Blumberg Alan F.2,Taylor Arthur A.3

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

2. Stevens Institute of Technology, Hoboken, New Jersey

3. Meteorological Development Laboratory, NOAA/NWS, Office of Science and Technology, Silver Spring, Maryland

Abstract

Abstract Three real-time storm surge forecasting systems [the eight-member Stony Brook ensemble (SBSS), the Stevens Institute of Technology’s New York Harbor Observing and Prediction System (SIT-NYHOPS), and the NOAA Extratropical Storm Surge (NOAA-ET) model] are verified for 74 available days during the 2007–08 and 2008–09 cool seasons for five stations around the New York City–Long Island region. For the raw storm surge forecasts, the SIT-NYHOPS model has the lowest root-mean-square errors (RMSEs) on average, while the NOAA-ET has the largest RMSEs after hour 24 as a result of a relatively large negative surge bias. The SIT-NYHOPS and SBSS also have a slight negative surge bias after hour 24. Many of the underpredicted surges in the SBSS ensemble are associated with large waves at an offshore buoy, thus illustrating the potential importance of nearshore wave breaking (radiation stresses) on the surge predictions. A bias correction using the last 5 days of predictions (BC) removes most of the surge bias in the NOAA-ET model, with the NOAA-ET-BC having a similar level of accuracy as the SIT-NYHOPS-BC for positive surges. A multimodel surge ensemble (ENS-3) comprising the SBSS control member, SIT-NYHOPS, and NOAA-ET models has a better degree of deterministic accuracy than any individual member. Probabilistically, the ALL ensemble (eight SBSS members, SIT-NYHOPS, and NOAA-ET) is underdispersed and does not improve after applying a bias correction. The ENS-3 improves the Brier skill score (BSS) relative to the best deterministic member (SIT-NYHOPS), and the ENS-3 has a larger BSS and better reliability than the SBSS and ALL ensembles, thus illustrating the benefits of a multimodel storm surge ensemble.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. The extratropical transition and precipitation distribution of Hurricane Floyd (1999);Atallah;Mon. Wea. Rev.,2003

2. The Betts–Miller scheme;Betts,1993

3. Storm surge in the region of western Alaska;Blier;Mon. Wea. Rev.,1997

4. Three-dimensional hydrodynamic model of New York Harbor region;Blumberg;J. Hydrol. Eng.,1999

5. Hydrologic feasibility of storm surge barriers to protect the metropolitan New York–New Jersey region;Bowman,2005

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3