The Remote Sensing of Clouds and Precipitation from Space: A Review

Author:

Stephens Graeme L.1,Kummerow Christian D.1

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract This paper presents a critical review of a number of popular methods that have been developed to retrieve cloud and precipitation properties from satellite radiance measurements. The emphasis of the paper is on the retrieval uncertainties associated with these methods, as these shape future data assimilation applications, either in the form of direct radiance assimilation or assimilation of retrieved geophysical data, or even in the use of retrieved information as a source of model error characterization. It is demonstrated throughout the paper how cloud and precipitation observing systems developed around seemingly simple concepts are in fact very complex and largely underconstrained, which explains, in part, why assigning realistic errors to these properties has been so elusive in the past. Two primary sources of error that define the observing system are highlighted throughout: (i) the first source is errors associated with the identification of cloudy scenes from clear scenes and the identification of precipitation in cloudy scenes from nonprecipitating cloudy scenes. The problems of discriminating of cloud clear and cloud precipitation are illustrated using examples drawn from microwave cloud liquid water path and precipitation retrievals. (ii) The second source is errors introduced by the forward model and its related parameters. The forward model generally contains two main components: a model of the atmosphere and the cloud and precipitation structures imbedded in that atmosphere and a forward model of the radiative transfer that produces the synthetic measurement that is ultimately compared to the measurement. The vast majority of methods developed for deriving cloud and precipitation information from satellite measurements is highly sensitive to these model parameters, which merely reflects the underconstrained nature of the problem and the need for other information in deriving solutions. The cloud and precipitation retrieval examples presented in this paper are most often constructed around very unrealistic atmosphere models typically composed of just a few layers. The consequence is that the retrievals become too sensitive to the unobserved parameters of those layers and the atmosphere above and below. Clearly a better definition of the atmospheric state, and the vertical structure of clouds and precipitation, are needed to improve the information extracted from satellite observations, and it is for this reason that the combination of active and passive measurements offers much hope for improving cloud and precipitation retrievals.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 274 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3