A Simple, Minimal Parameter Model for Predicting the Influence of Changing Land Cover on the Land–Atmosphere System+

Author:

Bagley Justin E.1,Desai Ankur R.2,West Paul C.3,Foley Jonathan A.4

Affiliation:

1. Center for Sustainability and the Global Environment (SAGE), and Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin

2. Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin

3. Center for Sustainability and the Global Environment (SAGE), University of Wisconsin—Madison, Madison, Wisconsin, and Institute on the Environment (IonE), University of Minnesota, St. Paul, Minnesota

4. Institute on the Environment (IonE), University of Minnesota, St. Paul, Minnesota

Abstract

Abstract The impacts of changing land cover on the soil–vegetation–atmosphere system are numerous. With the fraction of land used for farming and grazing expected to increase, extensive alterations to land cover such as replacing forests with cropland will continue. Therefore, quantifying the impact of global land-cover scenarios on the biosphere is critical. The Predicting Ecosystem Goods and Services Using Scenarios boundary layer (PegBL) model is a new global soil–vegetation–boundary layer model designed to quantify these impacts and act as a complementary tool to computationally expensive general circulation models and large-eddy simulations. PegBL provides high spatial resolution and inexpensive first-order estimates of land-cover change on the surface energy balance and atmospheric boundary layer with limited input requirements. The model uses a climatological-data-driven land surface model that contains only the physics necessary to accurately reproduce observed seasonal cycles of fluxes and state variables for natural and agricultural ecosystems. A bulk boundary layer model was coupled to the land model to estimate the impacts of changing land cover on the lower atmosphere. The model most realistically simulated surface–atmosphere dynamics and impacts of land-cover change at tropical rain forest and northern boreal forest sites. Further, simple indices to measure the potential impact of land-cover change on boundary layer climate were defined and shown to be dependent on boundary layer dynamics and geographically similar to results from previous studies, which highlighted the impacts of land-cover change on the atmosphere in the tropics and boreal forest.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3