Two Different Aperiodic Phases of Wind-Driven Ocean Circulation in a Double-Gyre, Two-Layer Shallow-Water Model

Author:

Matsuura Tomonori1,Fujita Mitsutaka1

Affiliation:

1. National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Ibaraki, Japan

Abstract

Abstract A two-layer shallow-water model is used to investigate the transition of wind-driven double-gyre circulation from laminar flow to turbulence as the Reynolds number (Re) is systematically increased. Two distinctly different phases of turbulent double-gyre patterns and energy trajectories are exhibited before and after at Re = 95: deterministic and fully developed turbulent circulations. In the former phase, the inertial subgyres vary between an asymmetric solution and an antisymmetric solution and the double-gyre circulations reach the aperiodic solution mainly due to their barotropic instability. An integrated kinetic energy in the lower layer is slight and the generated mesoscale eddies are confined in the upper layer. The power spectrum of energies integrated over the whole domain at Re = 70 has peaks at the interannual periods (4–7 yr) and the interdecadal period (10–20 yr). The loops of the attractors take on one cycle at those periods and display the blue-sky catastrophe. At Re = 95, the double-gyre circulation reaches a metastable state and the attracters obtained from the three energies form a topological manifold. In the latter, as Re increases, the double-gyre varies from a metastable state to a chaotic state because of the barotropic instability of the eastward jet and the baroclinic instability of recirculation retrograde flow, and the eastward jet meanders significantly with interdecadal variability. The generated eddies cascade to the red side of the power spectrum as expected in the geostrophic turbulence. The main results in the simulation may indicate essential mechanisms for the appearance of multiple states of the Kuroshio and for low-frequency variations in the midlatitude ocean.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3