Sea Ice and Current Response to the Wind: A Vector Regressional Analysis Approach

Author:

Rabinovich Alexander B.1,Shevchenko Georgy V.2,Thomson Richard E.3

Affiliation:

1. Department of Fisheries and Oceans, Institute of Ocean Sciences, Sidney, British Columbia, Canada, and P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

2. Far Eastern Branch, Institute of Marine Geology and Geophysics, Russian Academy of Sciences, Yuzhno-Sakhalinsk, Russia

3. Department of Fisheries and Oceans, Institute of Ocean Sciences, Sidney, British Columbia, Canada

Abstract

The authors describe a two-dimensional (vector) regressional model for examining the anisotropic response of ice drift and ocean current velocity (“drift velocity”) to surface wind forcing. Illustration of the method is limited to sea ice response. The principal mathematical and physical properties of the model are outlined, together with estimates of the “response matrices” and the corresponding “response ellipses” (drift velocity response to a unity wind velocity forcing). For each direction, φ, of the wind vector the method describes a corresponding “wind factor” α(φ) (relative drift speed) and “turning angle” θ(φ) (the angle between the drift velocity and wind vector). The major ellipse axis corresponds to the direction of the “effective wind” (φ = φmax) and the minor axis to the direction of the “noneffective” wind. The eigenvectors of the response matrix define wind directions that are the same as the wind-induced drift velocity directions. Depending on the water depth and offshore distance, six analytical cases are possible, ranging from rectilinear response ellipses near the coast to purely circular response ellipses in the open ocean. The model is used to examine ice drift along the western shelf of Sakhalin Island (Sea of Okhotsk). Responses derived from the vector regression (four parameter) method are less constrained and therefore more representative of wind-induced surface motions than those derived using the traditional complex transfer function (two parameter) approach.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3