Dynamics of the Extratropical Response to a Tropical Atlantic SST Anomaly

Author:

Li Shuanglin1,Robinson Walter A.2,Hoerling Martin P.1,Weickmann Klaus M.1

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

2. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Abstract

Abstract Previous atmospheric general circulation model (AGCM) experiments revealed that atmospheric responses to a tropical Atlantic sea surface temperature anomaly (SSTA) were asymmetric with respect to the sign of the SSTA. A positive SSTA produced a south–north dipole in geopotential heights, much like the North Atlantic Oscillation (NAO), while a negative SSTA yielded an eastward-propagating wave train, with the northern lobe of the NAO absent. Here these height responses are decomposed into components that are symmetric or antisymmetric with respect to the sign of the SSTA. The symmetric, or notionally linear, component is a nearly south–north dipole projecting on the NAO, while the antisymmetric, or notionally nonlinear, component is a different dipole. Experiments with a diagnostic linear baroclinic model (LBM) suggest that both components are maintained primarily by transient-eddy forcing. Dynamical mechanisms for the formation of the two components are explored using the LBM and a nonlinear barotropic vorticity equation model (BVM). Transient-eddy feedback is sufficient to explain the linear response. The NAO-like linear response occurs when the initial heating induces transient-eddy forcing in the exit of the Atlantic jet. The structure of the background absolute vorticity in this region is such that this transient-eddy forcing induces a nearly north–south dipole in anomalous geopotential heights. When the nonlinear self-interaction of this transient-induced low-frequency perturbation is included in the BVM, the dipole axis tilts to the east or west, resulting in a response that is nonlinear about the sign of the forcing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3