Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System

Author:

Hong Yang1,Hsu Kuo-Lin2,Sorooshian Soroosh1,Gao Xiaogang2

Affiliation:

1. Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona, and Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

2. Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Abstract

Abstract A satellite-based rainfall estimation algorithm, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Cloud Classification System (CCS), is described. This algorithm extracts local and regional cloud features from infrared (10.7 μm) geostationary satellite imagery in estimating finescale (0.04° × 0.04° every 30 min) rainfall distribution. This algorithm processes satellite cloud images into pixel rain rates by 1) separating cloud images into distinctive cloud patches; 2) extracting cloud features, including coldness, geometry, and texture; 3) clustering cloud patches into well-organized subgroups; and 4) calibrating cloud-top temperature and rainfall (Tb–R) relationships for the classified cloud groups using gauge-corrected radar hourly rainfall data. Several cloud-patch categories with unique cloud-patch features and Tb–R curves were identified and explained. Radar and gauge rainfall measurements were both used to evaluate the PERSIANN CCS rainfall estimates at a range of temporal (hourly and daily) and spatial (0.04°, 0.12°, and 0.25°) scales. Hourly evaluation shows that the correlation coefficient (CC) is 0.45 (0.59) at a 0.04° (0.25°) grid scale. The averaged CC of daily rainfall is 0.57 (0.63) for the winter (summer) season.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3