A Generalized Density-Based Algorithm for the Spatiotemporal Tracking of Drought Events

Author:

Cammalleri C.1ORCID,Toreti A.1

Affiliation:

1. a Joint Research Centre, European Commission, Ispra, Italy

Abstract

Abstract Drought events evolve simultaneously in space and time; hence, a proper characterization of an event requires the tracking of its full spatiotemporal evolution. Here we present a generalized algorithm for the tracking of drought events based on a three-dimensional application of the DBSCAN (density-based spatial clustering of applications with noise) clustering approach. The need for a generalized and flexible algorithm is dictated by the absence of a unanimous consensus on the definition of a drought event, which often depends on the target of the study. The proposed methodology introduces a set of six parameters that control both the spatial and the temporal connectivity between cells under drought conditions, also accounting for the local intensity of the drought itself. The capability of the algorithm to adapt to different drought definitions is tested successfully over a study case in Australia in the period 2017–20 using a set of standardized precipitation index (SPI) data derived from the ERA5 precipitation reanalysis. Insights on the possible range of variability of the model parameters, as well as on their effects on the delineation of drought events, are provided for the case of meteorological droughts in order to incentivize further applications of the methodology.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference28 articles.

1. The palmer drought severity index: Limitations and assumptions;Alley, W. M.,1984

2. Twentieth-century drought in the conterminous United States;Andreadis, K. M.,2005

3. A novel soil moisture-based drought severity index (DSI) combining water deficit magnitude and frequency;Cammalleri, C.,2016

4. The effects of non-stationarity on SPI for operational drought monitoring in Europe;Cammalleri, C.,2022

5. An approach to characterise spatio-temporal drought dynamics;Diaz, V.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3