A Relaxed Eddy Accumulation System for Measuring Surface Fluxes of Total Gaseous Mercury

Author:

Bash Jesse O.1,Miller David R.1

Affiliation:

1. University of Connecticut, Storrs, Connecticut

Abstract

Abstract A relaxed eddy accumulation (REA) system was designed to continuously measure total gaseous mercury (TGM) fluxes over a forest canopy. TGM concentration measurements were measured at 5-min intervals with a Tekran model 2537A mercury analyzer located above the forest canopy on a walk-up meteorological tower. Ten-minute averages for up- and downdraft mercury concentrations were used to calculate the flux. The multiresolution decomposition technique was used to determine day- and nighttime averaging periods for the turbulent statistics used in the REA technique. This paper documents the REA system for mercury flux measurements and its use over a forest canopy. The REA system response to the averaging times for the turbulent statistics and corrections to up- and downdraft concentrations are major considerations when using the technique with the Tekran mercury analyzer over a forest canopy. TGM flux data collected from 18 August to 12 September 2005 are used here to demonstrate the capabilities of the REA system to measure both short- (1-h time periods) and long-term flux dynamics. During the demonstration period the TGM median flux was 21.9 ± 32.6 ng m−2 h−1 and the median atmospheric TGM concentrations were 1.34 ± 0.13 ng m−2 h−1. Maximum short-term TGM evasive fluxes occurred during the daylight hours with minimums during the nighttime. A consistent bimodal emission pattern was observed during the daytime emissions over the canopy. The first peak occurred immediately following the evaporation of the nighttime dew on the canopy and the second peak occurred in the late afternoon.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3