A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height

Author:

Deppe Adam J.1,Gallus William A.1,Takle Eugene S.2

Affiliation:

1. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

2. Department of Geological and Atmospheric Sciences, and Department of Agronomy, Iowa State University, Ames, Iowa

Abstract

Abstract The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model simulations with different planetary boundary layer (PBL) schemes showed little spread among the individual ensemble members for forecasting wind speed. A second configuration using three random perturbations of the Global Forecast System model produced more spread in the wind speed forecasts, but the ensemble mean possessed a higher mean absolute error (MAE). A third ensemble of different initialization times showed larger model spread, but model MAE was not compromised. In addition, postprocessing techniques such as training of the model for the day 2 forecast based on day 1 results and bias correction based on observed wind direction are examined. Ramp event forecasting was also explored. An event was considered to be a ramp event if the change in wind power was 50% or more of total capacity in either 4 or 2 h or less. This was approximated using a typical wind turbine power curve such that any wind speed increase or decrease of more than 3 m s−1 within the 6–12 m s−1 window (where power production varies greatly) in 4 h or less would be considered a ramp. Model MAE, climatology of ramp events, and causes were examined. All PBL schemes examined predicted fewer ramp events compared to the observations, and model forecasts for ramps in general were poor.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. A simple temporal and spatial analysis of flow in complex terrain in the context of wind energy modeling;Ayotte;Bound.-Layer Meteor.,2001

2. An examination of local versus nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions;Bélair;J. Appl. Meteor.,1999

3. Bradford, K. T., R. L.Carpenter, and B.Shaw, 2010: Forecasting Southern Plains wind ramp events using the WRF model at 3-km. Preprints, Ninth Annual Student Conf., Atlanta, GA, Amer. Meteor. Soc., S30. [Available online at http://ams.confex.com/ams/pdfpapers/166661.pdf.]

4. Medium range lagged average forecasts;Dalcher;Mon. Wea. Rev.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3