Tropospheric Double Jets, Meridional Cells, and Eddies: A Case Study and Idealized Simulations

Author:

Bordi Isabella1,Fraedrich Klaus2,Lunkeit Frank2,Sutera Alfonso1

Affiliation:

1. Department of Physics, University of Rome “La Sapienza,” Rome, Italy

2. Meteorologisches Institut, Universität Hamburg, Hamburg, Germany

Abstract

Abstract The observed low-frequency variability of the zonally averaged atmospheric circulation in the winter hemisphere is found to be amenable to an interpretation where the subtropical jet is flanked by a secondary midlatitude one. Observations also suggest that the link between the stratosphere and the troposphere modulates the variability of the tropospheric double-jet structure. Moreover, the summer hemisphere is characterized by a strong midlatitude jet sided by an intermittent subtropical one and easterly winds in the stratosphere. This work addresses the question about the role of eddies in generating and maintaining these key features of the general circulation by means of a simplified general circulation model. Model solutions for different parameter settings and external radiative forcings in the stratosphere are studied with and without eddies active on the system. The following main findings are noted. 1) Eddy dynamics alone, through the baroclinic instability processes in an atmosphere subjected to radiative forcing and dissipation, may account for the observed meridional variance of the tropospheric jets. 2) The Hadley cell can extend to the pole overlying the Ferrel cell, a feature supported by observations in the summer hemisphere. 3) The meridional temperature gradient reversal in the summer stratosphere contributes to the observed low-frequency variability introducing an intermittent formation of a subtropical jet and the occurrence of easterlies in the tropical stratosphere. 4) Poleward propagation of the zonal wind anomaly is, when it occurs, related to the activity of synoptic eddies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference47 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3