Affiliation:
1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Abstract
Abstract
The importance of macrophysical variables [cloud thickness, liquid water path (LWP)] and microphysical variables (effective radius re, effective droplet concentration Neff) on warm drizzle intensity and frequency across the tropics and subtropics is studied. In this first part of a two-part study, Moderate Resolution Imaging Spectroradiometer (MODIS) optical and CloudSat cloud radar data are used to understand warm rain in marine clouds. Part II uses simple heuristic models. Cloud-top height and LWP substantially increase as drizzle intensity increases. Droplet radius estimated from MODIS also increases with cloud radar reflectivity (dBZ) but levels off as dBZ > 0, except where the influence of continental pollution is present, in which case a monotonic increase of re with drizzle intensity occurs. Off the Asian coast and over the Gulf of Mexico, re values are smaller (by several μm) and Neff values are larger compared to more remote marine regions. For heavy drizzle intensity, both re and Neff values off the Asian coast and over the Gulf of Mexico approach re and Neff values in more remote marine regions.
Drizzle frequency, defined as profiles in which maximum dBZ > −15, increases dramatically and nearly uniformly when cloud tops grow from 1 to 2 km. Drizzle frequencies exceed 90% in all regions when LWPs exceed 250 g m−2 and Neff values are below 50 cm−3, even in regions where drizzle occurs infrequently on the whole. The fact that the relationship among drizzle frequency, LWP, and Neff is essentially the same for all regions suggests a near universality among tropical and subtropical regions.
Publisher
American Meteorological Society
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献