Affiliation:
1. Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
Abstract
Abstract
The conceptual El Niño–Southern Oscillation (ENSO) recharge oscillator model is used to study the linear stability of ENSO under state-dependent noise forcing. The analytical framework developed by Jin et al. is extended to more fully study noise-induced instability of ENSO. It is shown that in addition to the noise-induced positive contribution to the growth rate of the ensemble mean (first moment) evolution of the ENSO cycle, there is also a noise-induced instability for the ensemble spread (second moment). These growth rates continue to increase as the strength of the multiplicative noise increases. In both the analytical solution and the numerical model, the criticality threshold for instability of the second moment occurs at a lower value of the parameter that measures multiplicative forcing than the threshold for the first moment. The noise-induced instability not only enhances ENSO activity but also results in a large ensemble spread and thus may reduce the effectiveness of ENSO prediction. As in the additive noise forcing case, the low-frequency variability in the forcing is the important part for forcing El Niño events and the high-frequency forcing alone cannot effectively excite ENSO.
Publisher
American Meteorological Society
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献