The Size Distribution and Mass-Weighted Terminal Velocity of Low-Latitude Tropopause Cirrus Crystal Populations

Author:

Schmitt C. G.1,Heymsfield A. J.1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Ice crystal terminal velocities govern the lifetime of radiatively complex, climatologically important, low-latitude tropopause cirrus clouds. To better understand cloud lifetimes, the terminal velocities of low-latitude tropopause cirrus cloud particles have been estimated using data from aircraft field campaigns. Data used in this study were collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE) and the Pre-Aura Validation Experiment (Pre-AVE). Particle properties were measured with the NCAR video ice particle sampler (VIPS) probe, thus providing information about particles in a poorly understood size range. Data used in this study were limited to high-altitude nonconvective thin clouds with temperatures between −56° and −86°C. Realistic particle terminal velocity estimates require accurate values of particle projected area and mass. Exponential functions were used to predict the dimensional properties of ice particles smaller than 200 microns and were found to predict ice water content measurements well when compared to power-law representations. The shapes of the particle size distributions were found to be monomodal and were well represented by exponential or gamma functions. Incorporating these findings into terminal velocity calculations led to lower values of mass-weighted terminal velocities for particle populations than are currently predicted for low-latitude ice clouds. New parameterizations for individual particle properties as well as particle size distribution properties are presented and compared to commonly used parameterizations. Results from this study are appropriate for use in estimating the properties of low-latitude thin and subvisible cirrus at temperatures lower than −56°C.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3