Evaporation of Nonequilibrium Raindrops as a Fog Formation Mechanism

Author:

Tardif Robert1,Rasmussen Roy M.2

Affiliation:

1. Research Applications Laboratory, National Center for Atmospheric Research, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

2. Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract To gain insights into the poorly understood phenomenon of precipitation fog, this study assesses the evaporation of freely falling drops departing from equilibrium as a possible contributing factor to fog formation in rainy conditions. The study is based on simulations performed with a microphysical column model describing the evolution of the temperature and mass of evaporating raindrops within a Lagrangian reference frame. Equilibrium defines a state where the latent heat loss of an evaporating drop is balanced by the sensible heat flux from the ambient air, hence defining a steady-state drop temperature. Model results show that the assumption of equilibrium leads to small but significant errors in calculated precipitation evaporation rates for drops falling in continuously varying ambient near-saturated or saturated conditions. Departure from equilibrium depends on the magnitude of the vertical gradients of the ambient temperature and moisture as well as the drop-size-dependent terminal velocity. Contrasting patterns of behavior occur depending on the stratification of the atmosphere. Raindrops falling in inversion layers remain warmer than the equilibrium temperature and lead to enhanced moistening, with supersaturation achieved when evaporation proceeds in saturated inversions. Dehydration occurs in layers with temperature and water vapor increasing with height due to the vapor flux from the environment to the colder drops. These contrasts are not represented when equilibrium is assumed. The role of nonequilibrium raindrop evaporation in fog occurrences is further emphasized with simulations of a case study characterized by fog forming under light rain falling in a developing frontal inversion. Good agreement is obtained between fog water content observations and simulations representing only the effects of rainfall evaporation. This study demonstrates the need to take into account the nonequilibrium state of falling raindrops for a proper representation of an important mechanism contributing to precipitation fog occurrences.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3