A General Theorem on Angular-Momentum Changes due to Potential Vorticity Mixing and on Potential-Energy Changes due to Buoyancy Mixing

Author:

Wood Richard B.1,McIntyre Michael E.1

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Abstract

Abstract An initial zonally symmetric quasigeostrophic potential vorticity (PV) distribution qi(y) is subjected to complete or partial mixing within some finite zone |y| < L, where y is latitude. The change in M, the total absolute angular momentum, between the initial and any later time is considered. For standard quasigeostrophic shallow-water beta-channel dynamics it is proved that, for any qi(y) such that dqi/dy > 0 throughout |y| < L, the change in M is always negative. This theorem holds even when “mixing” is understood in the most general possible sense. Arbitrary stirring or advective rearrangement is included, combined to an arbitrary extent with spatially inhomogeneous diffusion. The theorem holds whether or not the PV distribution is zonally symmetric at the later time. The same theorem governs Boussinesq potential-energy changes due to buoyancy mixing in the vertical. For the standard quasigeostrophic beta-channel dynamics to be valid the Rossby deformation length LD ≫ εL where ε is the Rossby number; when LD = ∞ the theorem applies not only to the beta channel but also to a single barotropic layer on the full sphere, as considered in the recent work of Dunkerton and Scott on “PV staircases.” It follows that the M-conserving PV reconfigurations studied by those authors must involve processes describable as PV unmixing, or antidiffusion, in the sense of time-reversed diffusion. Ordinary jet self-sharpening and jet-core acceleration do not, by contrast, require unmixing, as is shown here by detailed analysis. Mixing in the jet flanks suffices. The theorem extends to multiple layers and continuous stratification. A least upper bound and greatest lower bound for the change in M is obtained for cases in which qi is neither monotonic nor zonally symmetric. A corollary is a new nonlinear stability theorem for shear flows.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference33 articles.

1. A note on potential energy density in a stratified compressible fluid.;Andrews;J. Fluid Mech.,1981

2. Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid.;Arnol’d;Dokl. Akad. Nauk SSSR,1965

3. Baroclinic instability and the short wavelength cut-off in terms of potential vorticity.;Bretherton;Quart. J. Roy. Meteor. Soc.,1966

4. Waves and Mean Flows.;Bühler,2009

5. On the stability of internal baroclinic jets in a rotating atmosphere.;Charney;J. Atmos. Sci.,1962

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3