ENSO Amplitude Changes due to Climate Change Projections in Different Coupled Models

Author:

Yeh Sang-Wook1,Kirtman Ben P.2

Affiliation:

1. Korea Ocean Research & Development Institute, Ansan, South Korea

2. George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Abstract

Abstract Four climate system models are chosen here for an analysis of ENSO amplitude changes in 4 × CO2 climate change projections. Despite the large changes in the tropical Pacific mean state, the changes in ENSO amplitude are highly model dependant. To investigate why similar mean state changes lead to very different ENSO amplitude changes, the characteristics of sea surface temperature anomaly (SSTA) variability simulated in two coupled general circulation models (CGCMs) are analyzed: the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) models. The skewed distribution of tropical Pacific SSTA simulated in the MRI model suggests the importance of nonlinearities in the ENSO physics, whereas the GFDL model lies in the linear regime. Consistent with these differences in ENSO regime, the GFDL model is insensitive to the mean state changes, whereas the MRI model is sensitive to the mean state changes associated with the 4 × CO2 scenario. Similarly, the low-frequency modulation of ENSO amplitude in the GFDL model is related to atmospheric stochastic forcing, but in the MRI model the amplitude modulation is insensitive to the noise forcing. These results suggest that the understanding of changes in ENSO statistics among various climate change projections is highly dependent on whether the model ENSO is in the linear or nonlinear regime.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3