Using local dynamics to explain analog forecasting of chaotic systems

Author:

Platzer P.1,Yiou P.2,Naveau P.2,Tandeo P.3,Zhen Y.3,Ailliot P.4,Filipot J-F.5

Affiliation:

1. Laboratoire des Sciences du Climat et de l’Environnement, Saclay, France & Lab-STICC, UMR CNRS 6285, IMT Atlantique, F-29238, Plouzané, France & France Énergies Marines, Plouzané, France

2. Laboratoire des Sciences du Climat et de l’Environnement (ESTIMR team), UMR 8212 CEA-CNRS-UVSQ, IPSL & U Paris-Saclay, 91191 Gif-sur-Yvette, France

3. Lab-STICC, UMR CNRS 6285, IMT Atlantique, F-29238, Plouzané, France

4. Laboratoire de Mathématiques de Bretagne Atlantique, Brest, France

5. France Énergies Marines, Plouzané, France

Abstract

AbstractAnalogs are nearest neighbors of the state of a system. By using analogs and their successors in time, one is able to produce empirical forecasts. Several analog forecasting methods have been used in atmospheric applications and tested on well-known dynamical systems. Such methods are often used without reference to theoretical connections with dynamical systems. Yet, analog forecasting can be related to the dynamical equations of the system of interest. This study investigates the properties of different analog forecasting strategies by taking local approximations of the system’s dynamics. We find that analog forecasting performances are highly linked to the local Jacobian matrix of the flow map, and that analog forecasting combined with linear regression allows to capture projections of this Jacobian matrix. Additionally, the proposed methodology allows to efficiently estimate analog forecasting errors, an important component in many applications. Carrying out this analysis also allows to compare different analog forecasting operators, helping to choose which operator is best suited depending on the situation. These results are derived analytically and tested numerically on two simple chaotic dynamical systems. The impact of observational noise and of the number of analogs is evaluated theoretically and numerically.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3