Realization of Self-Preserving Size Distribution Theory for the Evolution of Tropospheric Atmospheric Aerosols Through an Inverse Gaussian Distribution

Author:

Shen J.1,Yu M.12,Koivisto A. J.345,Jiang H.1,Liu Y.1,Wang L.6,Hussein T.78

Affiliation:

1. a Laboratory of Aerosol Science and Technology, China Jiliang University, Hangzhou 310018, China

2. b Department of Atmospheric Science, Zhejiang University, Hangzhou 310027, China

3. d ARCHE Consulting, Liefkensstraat 35D B-9032 Wondelgem, Belgium

4. e Air Pollution Management, Willemoesgade 16, st tv, Copenhagen DK-2100, Denmark

5. f Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, FI-00014 UHEL, Helsinki

6. g Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China

7. h University of Helsinki, Faculty of Science, Institute for Atmospheric and Earth System Research (INAR/Physics), Helsinki, FI-00014, Finland

8. i University of Jordan, School of Science, Department of Physics, Amman, 11942, Jordan

Abstract

AbstractThe inverse Gaussian distributed method of moments (IGDMOM; J. Atmospheric Sci. 77 (9): 3011-3031, 2020) was developed to analytically solve the kinetic collection equation (KCE) for the first time. Using the IGDMOM, we obtained both new analytical and asymptotic solutions to the KCE. This is shown for both the free molecular and continuum regime collision frequency functions. The new analytical solutions are highly suitable for demonstrating the self-preserving size distribution (SPSD) theory. The SPSD theory is considered one of the most elegant research works in atmospheric science for aerosols or small cloud droplets. It was initially discovered by Friedlander (J. Meteorology 17 (5): 479-483, 1960) and then developed by Lee (J. Colloid Interface Sci. 92 (2): 315-325, 1983) with an assumption of the time-dependent lognormal size distribution function. In this study, we demonstrate that the SPSD theory of coagulating atmospheric aerosols can be presented in a simpler and more rigorous theoretical way, which is realized through the introduction of the IGDMOM for describing aerosol size distributions. Using the IGDMOM, the new formulas for the SPSD, as well as the time required for aerosols to reach the SPSD, are analytically provided and verified. Furthermore, we discover that the SPSD of atmospheric aerosols undergoing coagulation is only determined using a shape factor variable, 𝛺, which is composed of the first three moments at an initial stage. This study has critical implications for developing tropospheric atmospheric aerosol or small cloud droplet dynamics models and further verifies the SPSD theory from the viewpoint of theoretical analysis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3