The Effect of Sea Surface Temperature Fronts on Atmospheric Frontogenesis

Author:

Reeder Michael J.1,Spengler Thomas2,Spensberger Clemens2

Affiliation:

1. School of Earth, Atmosphere and Environment and Centre of Excellence for Climate Extremes, Monash University, Clayton, Victoria, Australia

2. Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Abstract

AbstractIt is thought that the sensible heat fluxes associated with sea surface temperature (SST) fronts can affect the genesis and evolution of atmospheric fronts. An analytic model is developed and used to explore this idea. The model predictions are compared with climatologies of atmospheric fronts over the North Atlantic Ocean identified in reanalyses. The climatologies are divided into times when fronts are detected at a point and times when they are not, and compared with model results with and without fronts in their initial conditions.In airstreams with fronts, both the climatologies and model show that adiabatic frontogenesis is much more important than diabatic frontogenesis. They also show that there is weak diabatic frontogenesis associated with differential sensible heating over the SST front and frontolysis either side of it. Because of the upstream and downstream frontolysis, the SST front has relatively little net effect on atmospheric fronts in the model. This result holds true as the width and strength of the SST front changes.In airstreams initially without fronts, a combination of adiabatic and diabatic frontogenesis is important for the local genesis of atmospheric fronts over the SST front. The model shows sustained frontogenesis only when the deformation is sufficiently strong or when the translation speed is low, as advection otherwise weakens the potential temperature gradient. This strong localized diabatic frontogenesis, which is amplified by adiabatic frontogenesis, can result in a front, which is consistent with atmospheric fronts in the region being most frequently located along the SST front.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3