Affiliation:
1. a National Center for Atmospheric Research, Boulder, Colorado
Abstract
AbstractThis study explores the response of flow around isolated cuboid buildings to variations in the incoming turbulence arising from changes in atmospheric boundary layer (ABL) stability using a building-resolving large-eddy simulation (LES) technique with explicit representation of building effects through an immersed body force method. An extensive suite of LES for a neutral ABL with different model resolution and advection scheme configurations reveals that at least 6, 12, and 24 grid points per building side are required in order to resolve building-induced vortex shedding, mean-flow features, and turbulence statistics, respectively, with an advection scheme of a minimum of third order. Using model resolutions that meet this requirement, 21 building-resolving simulations are performed under varying atmospheric stability conditions, from weakly stable to convective ABLs, and for different building sizes (H), resulting in LABL/H ≈ 0.1–10, where LABL is the integral length scale of the incoming ABL turbulence. The building-induced flow features observed in the canonical neutral ABL simulation, e.g., the upstream horseshoe vortex and the downstream arch vortex, gradually weaken with increasing surface-driven convective instability due to the enhancement of background turbulent mixing. As a result, two local turbulence kinetic energy peaks on the lateral side of the building in nonconvective cases are merged into a single peak in strong convective cases. By considering the ABL turbulence scale and building size altogether, it is shown that the building impact decreases with increasing LABL/H, as coherent turbulent structures in the ABL become more dominant over a building-induced flow response for LABL/H > 1.
Publisher
American Meteorological Society
Reference130 articles.
1. Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface;Giometto;Bound.-Layer Meteor.,2016
2. Turbulent flow around a wall-mounted cube: A direct numerical simulation;Yakhot;Int. J. Heat Fluid Flow,2006
3. The impact of urban areas on weather;Collier;Quart. J. Roy. Meteor. Soc.,2006
4. On the application of the eddy viscosity concept in the inertial sub - range of turbulence Manuscript;Lilly,1966
5. Flow around a cube for Reynolds numbers between 500 and 55,000;Khan;Exp. Therm. Fluid Sci.,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献