A Large-Eddy Simulation Study on the Diurnally Evolving Nonlinear Trapped Lee Waves over a Two-Dimensional Steep Mountain

Author:

Xue Haile12,Giorgetta Marco A.2

Affiliation:

1. a State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

2. b Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

AbstractThe diurnally evolving trapped lee wave over a small-scale two-dimensional steep mountain is investigated in large-eddy simulations based on a fully compressible and nonhydrostatic model [Icosahedral Nonhydrostatic (ICON)] with triangular grids of 50-m-edge length. An idealized atmospheric profile derived from a realistic case is designed to account for influences from the stagnant layer near the surface, the stability of the atmospheric boundary layer (ABL) and the upper-level jet. First, simulations were done to bridge from the linear regime to the nonlinear regime by increasing the mountain height, which showed that larger-amplitude lee waves with longer wavelength can be produced in the nonlinear regime than in the linear regime. Second, the effects of the stagnant layer near the surface and the ABL stability were explored, which showed that the stagnant layer or the stable ABL can play a similar wave-absorbing role in the nonlinear regime as in linear theories or simulations. Third, the role of the upper-level jet was explored, indicating that a stronger (weaker) upper-level jet can help to produce longer (shorter) lee waves. The stable ABL with a stagnant layer can more (less) efficiently absorb the longer (shorter) lee waves due to the stronger (weaker) jet, so that the wave response is more sensitive to the wave-absorption layer when an upper-level jet is present. Finally, the momentum budget was analyzed to explore the interaction between the upper and lower levels of the troposphere, which showed that the momentum flux due to the upward-propagating waves and trapped waves varies with the upper-level jet strength and low-level stagnancy and ABL stability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference106 articles.

1. Numerical calculation of the displacements of a stratified airstream crossing a ridge of small height;Sawyer;Quart. J. Roy. Meteor. Soc.,1960

2. Inversion effects on mountain lee waves;Vosper;Quart. J. Roy. Meteor. Soc.,2004

3. The origin of severe downslope windstorm pulsations;Peltier;J. Atmos. Sci.,1990

4. waves Meteorology Forecasting Meteor;Durran;Soc,1986

5. Estimating topographic blocking using a Froude number when the static stability is nonuniform;Reinecke;J. Atmos. Sci.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3