Constraining ice water content of thin Antarctic cirrus clouds using ground-based lidar and satellite data

Author:

Alexander S. P.1,Klekociuk A. R.1

Affiliation:

1. Australian Antarctic Division, Kingston, Tasmania, Australia, and Australian Antarctic Programme Partnership, Institute for Marine and Antarctic Science, Hobart, Tasmania, Australia

Abstract

AbstractWe combine observations of optically-thin cirrus clouds made by lidar at Davis, Antarctica (69°S, 78°E) during 14 – 15 June 2011 with a microphysical retrieval algorithm to constrain the ice water content (IWC) of these clouds. The cirrus were embedded in a tropopause jet which flowed around a ridge of high pressure extending southwards over Davis from the Southern Ocean. Cloud optical depths were (0.082±0.001) and sub-visual cirrus were present during 11% of the observation period. The macrophysical cirrus cloud properties obtained during this case study are consistent with those previously reported at lower latitudes. MODIS satellite imagery and AIRS surface temperature data are used as inputs into a radiative transfer model in order to constrain the IWC and ice water path of the cirrus. The derived cloud IWC is consistent with in-situ observations made at other locations but at similarly cold temperatures. The optical depths derived from the model agree with those calculated directly from the lidar data. This study demonstrates the value of a combination of ground-based lidar observations and a radiative transfer model in constraining microphysical cloud parameters which could be utilised at locations where other lidar measurements are made.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurement report: Understanding the seasonal cycle of Southern Ocean aerosols;Atmospheric Chemistry and Physics;2023-03-29

2. Locations for the best lidar view of mid-level and high clouds;Atmospheric Measurement Techniques;2022-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3