Affiliation:
1. a Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, United Kingdom
Abstract
AbstractThe global superrotation index S compares the integrated axial angular momentum of the atmosphere to that of a state of solid-body corotation with the underlying planet. The index S is similar to a zonal Rossby number, which suggests it may be a useful indicator of the circulation regime occupied by a planetary atmosphere. We investigate the utility of S for characterizing regimes of atmospheric circulation by running idealized Earthlike general circulation model experiments over a wide range of rotation rates Ω, 8ΩE to ΩE/512, where ΩE is Earth’s rotation rate, in both an axisymmetric and three-dimensional configuration. We compute S for each simulated circulation, and study the dependence of S on Ω. For all rotation rates considered, S is on the same order of magnitude in the 3D and axisymmetric experiments. For high rotation rates, S ≪ 1 and S ∝ Ω−2, while at low rotation rates S ≈ 1/2 = constant. By considering the limiting behavior of theoretical models for S, we show how the value of S and its local dependence on Ω can be related to the circulation regime occupied by a planetary atmosphere. Indices of S ≪ 1 and S ∝ Ω−2 define a regime dominated by geostrophic thermal wind balance, and S ≈ 1/2 = constant defines a regime where the dynamics are characterized by conservation of angular momentum within a planetary-scale Hadley circulation. Indices of S ≫ 1 and S ∝ Ω−2 define an additional regime dominated by cyclostrophic balance and strong equatorial superrotation that is not realized in our simulations.
Publisher
American Meteorological Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献