Possible Dependence of Climate on Atmospheric Mass: A Convection–Circulation–Cloud Coupled Feedback

Author:

Xiong Junyan1,Yang Jun1,Nie Ji1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Abstract

AbstractThe total mass of the atmosphere [or equivalently, the background surface pressure (SP)] may have varied significantly over the evolutionary histories of Earth and other planets. Atmospheric mass can affect climate by modifying physical processes, including shortwave scattering, the emissivity of greenhouse gases, the atmospheric heat capacity, and surface fluxes. We apply a three-dimensional global climate model to explore the dependence of climate on SP over the range of 0.5–2.5 bar. Our simulations show an intriguing, nonmonotonic dependence of climate on SP. Over the SP range of 0.5–0.9 and 1.5–2.5 bar, the surface temperature increases with SP; however, over the SP range of 0.9–1.5 bar, the surface temperature decreases with SP. The negative correlation is due to a convection–circulation–cloud coupled feedback. As SP increases, the moist adiabatic lapse rate increases, leading to upper-troposphere cold anomalies in the tropics and middle latitudes that increase the midlatitude baroclinicity and eddy activity. In association with these changes, the eddy-driven jet is strengthened and shifts equatorward, and two separate westerly jets merge into a single jet. These abrupt circulation changes result in an equatorward shift of the midlatitude cloud belt and reduction of polar clouds, which induce strong negative cloud radiative forcing that cools the climate. Our results demonstrate that the regime transition of flow state (e.g., the merge of jets here) may induce large anomalies in clouds and radiative forcing, resulting in nonlinear climate responses.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3