Which Combinations of Environmental Conditions and Microphysical Parameter Values Produce a Given Orographic Precipitation Distribution?

Author:

Morales Annareli1,Posselt Derek J.2,Morrison Hugh1

Affiliation:

1. a Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado

2. b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

AbstractThis study applies an idealized modeling framework, alongside a Bayesian Markov chain Monte Carlo (MCMC) algorithm, to explore which combinations of upstream environmental conditions and cloud microphysical parameter values can produce a particular precipitation distribution over an idealized two-dimensional, bell-shaped mountain. Simulations focus on orographic precipitation produced when an atmospheric river interacts with topography. MCMC-based analysis reveals that different combinations of parameter values produce a similar precipitation distribution, with the most influential parameters being relative humidity (RH), horizontal wind speed (U), surface potential temperature (θsfc), and the snow fall speed coefficient (As). RH, U, and As exhibit interdependence: changes in one or more of these factors can be mitigated by compensating changes in the other(s) to produce similar orographic precipitation rates. The results also indicate that the parameter sensitivities and relationships can vary for spatial subregions and given different environmental conditions. In particular, high θsfc values are more likely to produce the target precipitation rate and spatial distribution, and thus the ensemble of simulations shows a preference for liquid precipitation at the surface. The results presented here highlight the complexity of orographic precipitation controls, and have implications for flood and water management, observational efforts, and climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3