Gravitational Collision of Small Nonspherical Particles: Swept Volumes of Prolate and Oblate Spheroids in Calm Air

Author:

Gavze Ehud1,Khain Alexander1

Affiliation:

1. a Institute of Earth Science, Hebrew University of Jerusalem, Jerusalem, Israel

Abstract

Abstract The aggregation rate of ice crystals depends on their shape and intercrystal relative velocity. Unlike spherical particles, the nonspherical ones can have various orientations relative to the gravitational force in the vertical direction and can approach each other at many different angles. Furthermore, the fall velocity of such particles could deviate from the vertical direction velocity. These properties add to the computational complexity of nonspherical particle collisions. In this study, we derive general mathematical expressions for gravity-induced swept volumes of spheroidal particles. The swept volumes are shown to depend on the particles’ joint orientation distribution and relative velocities. Assuming that the particles are Stokesian prolate and oblate spheroids of different sizes and aspect ratios, the swept volumes were calculated and compared to those of equivalent volume spheres. Most calculated swept volumes were larger than the swept volumes of equivalent spherical particles, sometimes by several orders of magnitude. This was due to both the complex geometry and the side drift, experienced by spheroids falling with their major axes not parallel to gravity. We expect that the collision rate between nonspherical particles is substantially higher than that of equivalent volume spheres because the collision process is nonlinear. These results suggest that the simplistic approach of equivalent spheres might lead to serious errors in the computation of the collision rate.

Funder

Department of Energy of US

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inertia Induces Strong Orientation Fluctuations of Nonspherical Atmospheric Particles;Physical Review Letters;2024-01-19

2. Colliding Ice Crystals in Turbulent Clouds;Journal of the Atmospheric Sciences;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3