Uncertainty in the Parameterization of Surface Fluxes under Unstable Conditions

Author:

Srivastava Piyush12,Sharan Maithili1

Affiliation:

1. a Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India

2. b Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, India

Abstract

AbstractIn this study, an attempt has been made to analyze the possible uncertainties in the parameterization of surface fluxes associated with the form of non-dimensional wind and temperature profile functions used in weather and climate models under convective conditions within the framework of Monin-Obukhov similarity theory (MOST). For this purpose, these functions, which are commonly known as similarity functions, are classified into four categories based on the resemblance in their functional behaviour. The bulk flux algorithm is used for the estimation of transfer coefficients of momentum and heat using four different classes of similarity functions. Uncertainty in the estimated values of fluxes is presented in the form of deviation in the predicted values of momentum and heat transfer coefficients and their variation with the Monin-Obukhov stability parameter. The analysis suggests that a large deviation in the values of estimated fluxes might occur if different forms of similarity functions are utilized for the estimation of surface fluxes. Recommendations are made for the form of similarity function for momentum based on the analysis of one year-long turbulence observations over an Indian region. The study suggests that there is a distinct need to carry out a careful analysis of turbulence data in free convective conditions for determining a consistent functional form of the similarity functions to be utilized in the atmospheric models universally.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the nature of drag coefficient over a tropical coastal station;Meteorology and Atmospheric Physics;2023-10-30

2. Impact of the similarity functions of surface layer parametrization in a climate model over the Indian region;Quarterly Journal of the Royal Meteorological Society;2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3