Reply to “Comments on ‘How Much Does the Upward Advection of the Supergradient Component of Boundary Layer Wind Contribute to Tropical Cyclone Intensification and Maximum Intensity?’”

Author:

Li Yuanlong1234,Wang Yuqing345,Lin Yanluan12

Affiliation:

1. a Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

2. b Joint Center for Global Change Studies, Tsinghua University, Beijing, China

3. c International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

4. d Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

5. e State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Abstract

AbstractThis is a reply to the comments by Smith et al. (2020, hereafter SGM20) on the work of Li et al. (2020, hereafter LWL20) recently published in the Journal of the Atmospheric Sciences. All the comments and concerns by SGM20 have been well addressed or clarified. We think that most of the comments by SGM20 are not in line with the intention of LWL20 and provide one-sided and thus little scientifically meaningful arguments. Regarding the comment on the adequacy of the methodology adopted in LWL20, we believe that the design of the thought (sensitivity) experiment is adequate to address the scientific issue under debate and helps quantify the contribution by the upward advection of the supergradient component of boundary layer wind to tropical cyclone intensification, which is shown to be very marginal. Note that we are open to accept any alternative, better methods to be used to further address this scientific issue.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3