A New k-Distribution Scheme for Clear-Sky Radiative Transfer Calculations in Earth’s Atmosphere. Part II: Solar (Shortwave) Heating due to H2O and CO2

Author:

Chou Ming-Dah1,Lee Kyu-Tae2,Zo Il-Sung2,Lee Wei-Liang3,Shiu Chein-Jung3,Jee Joon-Bum4

Affiliation:

1. 1 Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

2. 2 Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University, Gangneung, Republic of Korea

3. 3 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

4. 4 Research Center for Atmospheric Environment, Hankuk University of Foreign Studies, Yongin, Republic of Korea

Abstract

AbstractA new k-distribution scheme without the assumption of the correlation between the absorption coefficients at different pressures is developed for solar heating due to water vapor and CO2. Grouping of spectral points is based on the observation that radiation at spectral points with a large absorption coefficient is quickly absorbed to heat the stratosphere, and the heating below is attributable to the absorption of the solar radiation at the remaining spectral points. By grouping the spectral points with a large absorption coefficient at low pressures, the range of the absorption coefficient of the remaining spectral points is narrowed, and the k-distribution approximation can be accurately applied to compute solar heating in both the stratosphere and troposphere. Grouping of the spectral points is based on the absorption coefficient at a couple of reference pressures where heating is significant. With a total number of 52 spectral groups in the water vapor and CO2 bands, fluxes and heating rates were calculated for various solar zenith angles in some typical and sampled atmospheres in diverse climatic regimes and seasons. The maximum heating rate difference between the k-distribution and line-by-line calculations is < 0.09 K day-1 for water vapor, and < 0.2 K day-1 for CO2. The difference in the surface radiation is ~ 1.4 W m-2 for water vapor and 0.6 W m-2 for CO2, while it could increase to 2.6 W m-2 due to overlapping absorption. These results can be improved by increasing the number of spectral groups at the expense of computational economy.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3