Revisiting the Quasi-Biennial Oscillation as Seen in ERA5. Part I: Description and Momentum Budget

Author:

Pahlavan Hamid A.1,Fu Qiang1,Wallace John M.1,Kiladis George N.2

Affiliation:

1. a Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. b NOAA/Physical Sciences Laboratory, Boulder, Colorado

Abstract

AbstractThe dynamics and momentum budget of the quasi-biennial oscillation (QBO) are examined in ERA5. Because of ERA5’s higher spatial resolution compared to its predecessors, it is capable of resolving a broader spectrum of atmospheric waves and allows for a better representation of the wave–mean flow interactions, both of which are of crucial importance for QBO studies. It is shown that the QBO-induced mean meridional circulation, which is mainly confined to the winter hemisphere, is strong enough to interrupt the tropical upwelling during the descent of the westerly shear zones. Since the momentum advection tends to damp the QBO, the wave forcing is responsible for both the downward propagation and for the maintenance of the QBO. It is shown that half the required wave forcing is provided by resolved waves during the descent of both westerly and easterly regimes. Planetary-scale waves account for most of the resolved wave forcing of the descent of westerly shear zones and small-scale gravity (SSG) waves with wavelengths shorter than 2000 km account for the remainder. SSG waves account for most of the resolved forcing of the descent of the easterly shear zones. The representation of the mean fields in the QBO is very similar in ERA5 and ERA-Interim but the resolved wave forcing is substantially stronger in ERA5. The contributions of the various equatorially trapped wave modes to the QBO forcing are documented in Part II.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3