The Circulation Response of a Two-Dimensional Frontogenetic Model to Optimized Moisture Perturbations

Author:

Demirdjian Reuben12,Rotunno Richard3,Cornuelle Bruce D.4,Reynolds Carolyn A.5,Doyle James D.5

Affiliation:

1. a Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. b National Research Council, Monterey, California

3. c National Center for Atmospheric Research, Boulder, Colorado

4. d Scripps Institution of Oceanography, La Jolla, California

5. e Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Abstract

AbstractAn analysis of the influence and sensitivity of moisture in an idealized two-dimensional moist semigeostrophic frontogenesis model is presented. A comparison between a dry (relative humidity RH = 0%) version and a moist (RH = 80%) version of the model demonstrates that the impact of moisture is to increase frontogenesis, strengthen the transverse circulation (uag, w), generate a low-level potential-vorticity anomaly, and develop a low-level jet. The idealized model is compared with a real case simulated with the full-physics three-dimensional Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model, establishing good agreement and thereby confirming that the idealized model retains the essential physical processes relevant for improving understanding of midlatitude frontogenesis. Optimal perturbations of mixing ratio are calculated to quantify the circulation response of the model through the computation of singular vectors, which determines the fastest-growing modes of a linearized version of the idealized model. The vertical velocity is found to respond strongly to initial-condition mixing-ratio perturbations such that small changes in moisture lead to large changes in the ascent. The progression of physical processes responsible for this nonlinear growth is (in order) jet/front transverse circulation → moisture convergence ahead of the front → latent heating at mid- to low elevations → reduction in static stability ahead of the front → strengthening of the transverse circulation, and the feedback cycle repeats. Together, these physical processes represent a pathway by which small perturbations of moisture can have a strong impact on a forecast involving midlatitude frontogenesis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3