Affiliation:
1. a Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
Abstract
AbstractHigh-shear, low-CAPE environments prevalent in the southeastern United States account for a large fraction of tornadoes and pose challenges for operational meteorologists. Yet, existing knowledge of supercell dynamics, particularly in the context of cloud-resolving modeling, is dominated by moderate- to high-CAPE environments typical of the Great Plains. This study applies high-resolution modeling to clarify the behavior of supercells in the more poorly understood low-CAPE environments, and compares them to a benchmark simulation in a higher-CAPE environment. Simulated low-CAPE supercells’ main updrafts do not approach the theoretical equilibrium level; their largest vertical velocities result not from buoyancy, but from dynamic accelerations associated with low-level mesocyclones and vortices. Surprisingly, low-CAPE tornado-like vortex parcels also sometimes stop ascending near the vortex top instead of carrying large vorticity upward into the midlevel updraft, contributing to vortex shallowness. Each of these low-CAPE behaviors is attributed to dynamic perturbation pressure gradient accelerations that are maximized in low levels, which predominate when the buoyancy is small.
Publisher
American Meteorological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献