A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations

Author:

Saito Masanori1,Yang Ping1,Ding Jiachen1,Liu Xu2

Affiliation:

1. 1 Department of Atmospheric Sciences, Texas A&M University, College Station, TX

2. 2 NASA Langley Research Center, Hampton, VA

Abstract

AbstractA database (TAMUdust2020) of the optical properties of irregular aerosol particles is developed for applications to radiative transfer simulations involving aerosols, particularly dust and volcanic ash particles. The particle shape model assumes an ensemble of irregular hexahedral geometries to mimic complex aerosol particle shapes in nature. State-of-the-art light scattering computational capabilities are employed to compute the single-scattering properties of these particles for wide ranges of values of the size parameter, the index of refraction, and the degree of sphericity. The database therefore is useful for various radiative transfer applications over a broad spectral region from ultraviolet to infrared. Overall, agreement between simulations and laboratory/in-situ measurements is achieved for the scattering phase matrix and backscattering of various dust aerosol and volcanic ash particles. Radiative transfer simulations of active and passive spaceborne sensor signals for dust plumes with various aerosol optical depths and the effective particle sizes clearly demonstrate the applicability of the database for aerosol studies. In particular, the present database includes, for the first time, robust backscattering of nonspherical particles spanning the entire range of aerosol particle sizes, which shall be useful to appropriately interpret lidar signals related to the physical properties of aerosol plumes. Furthermore, thermal infrared simulations based on in-situ measured refractive indices of dust aerosol particles manifest the effects of the regional variations of aerosol optical properties. This database includes a user-friendly interface to obtain user-customized aerosol single-scattering properties with respect to spectrally dependent complex refractive index, size, and the degree of sphericity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3