The Dynamics of Quasi-Stationary Atmospheric Rivers and Their Implications for Monsoon Onset

Author:

Lee Hung-I1,Mitchell Jonathan L.2

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Department of Geophysical Sciences, University of Chicago

2. Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles

Abstract

AbstractA global Hovmöller diagram of column water vapor (CWV) at 30°N from daily ERA-Interim reanalysis data shows seasonally migrating North Pacific/Atlantic quasi-stationary atmospheric rivers (QSARs) located in the Eastern Pacific/Atlantic in winter and propagate to the Western Pacific/Atlantic in summer. Simplified general circulation model (GCM) experiments produce QSAR-like features if the boundary conditions include (1) the sea surface temperature contrast from the tropical warm pool-cold tongue and (2) topographic contrast similar to the Tibetan plateau. Simulated QSARs form downstream of topographic contrast during winter and coincide with it in summer. Two models of baroclinic instability demonstrate that QSARs coincide with the location where the most unstable mode phase speed equals that of the upper-level zonal winds. A consistent interpretation is that the waves become quasi-stationary at this location and break. The location of quasistationarity migrates from the Eastern Pacific/Atlantic in the winter, when upper-level winds are strong and extended over the basin, to the Western Pacific/Atlantic when winds are weak and contracted. Low-level wind convergence and moist static energy coincide with QSARs, and since the former two are essential ingredients to monsoon formation, this implies an important role for QSARs in monsoon onset. This connection opens a new window into the dynamics of subtropical monsoon extensions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale Nature of Atmospheric Rivers;Geophysical Research Letters;2023-05-23

2. A Theory for the Hadley Cell Descending and Ascending Edges throughout the Annual Cycle;Journal of the Atmospheric Sciences;2022-10

3. Long-term trends in atmospheric rivers over East Asia;Climate Dynamics;2022-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3