Local Similarity Theory of Convective Turbulent Layer Using “Spectral” Prandtl Mixing Length and Second Moment of Vertical Velocity

Author:

Abstract

Abstract Approximations of the turbulent moments of the atmospheric convective boundary layer are constructed based on a variant of the local similarity theory. As the basic parameters of this theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used. This specific choice of the basic parameters allows us to consider the coefficient of turbulent transfer and the dissipation of kinetic energy of the Prandtl turbulence theory as the forms of the local similarity. Therefore, the obtained approximations of the turbulent moments should be considered as natural complementation to the semiempirical turbulence theory. Moreover, within the atmospheric surface layer, the approximations of the new local similarity theory are identical to the relations of the Monin–Obukhov similarity theory (MOST). Therefore, the proposed approximations should be considered as a direct generalization of the MOST under free-convection conditions. The new approximations are compared with the relations of the known local similarity theories. The advantages and limitations of the new theory are discussed. The comparison of the approximations of the new local similarity theory with the field and laboratory experimental data indicates the high effectiveness of the proposed approach.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference190 articles.

1. Local free-convection, similarity, and the budgets of shear stress and heat flux;Wyngaard;J. Atmos. Sci.,1971

2. Corrigendum;Kalthoff;Meteor. Z.,2013

3. A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation;Lenschow;Bound.-Layer Meteor.,2012

4. Turbulence in the thermally inhomogeneous atmosphere;Obukhov;Akad. Nauk SSSR Tr. Inst. Theor. Geofiz.,1946

5. Scale analysis of deep and shallow convection in the atmosphere;Ogura;J. Atmos. Sci.,1962

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3