Discrimination of Mixed- versus Ice-Phase Clouds Using Dual-Polarization Radar with Application to Detection of Aircraft Icing Regions*

Author:

Plummer David M.1,Göke Sabine2,Rauber Robert M.1,Di Girolamo Larry1

Affiliation:

1. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

2. Department of Physics, University of Helsinki, Helsinki, Finland

Abstract

Abstract Dual-polarization radar measurements and in situ measurements of supercooled liquid water and ice particles within orographic cloud systems are used to develop probabilistic criteria for identifying mixed-phase versus ice-phase regions of sub-0°C clouds. The motivation for this study is the development of quantitative criteria for identification of potential aircraft icing conditions in clouds using polarization radar. The measurements were obtained during the Mesoscale Alpine Programme (MAP) with the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-Pol) and Electra aircraft. The comparison of the radar and aircraft measurements required the development of an automated algorithm to match radar and aircraft observations in time and space. This algorithm is described, and evaluations are presented to verify its accuracy. Three polarization radar parameters, the radar reflectivity factor at horizontal polarization (ZH), the differential reflectivity (ZDR), and the specific differential phase (KDP), are first separately shown to be statistically distinguishable between conditions in mixed- and ice-phase clouds, even when an estimate of measurement uncertainty is included. Probability distributions for discrimination of mixed-phase versus ice-phase clouds are then developed using the matched radar and aircraft measurements. The probability distributions correspond well to a basic physical understanding of ice particle growth by riming and vapor deposition, both of which may occur in mixed-phase conditions. To the extent that the probability distributions derived for the MAP orographic clouds can be applied to other cloud systems, they provide a simple tool for warning aircraft of the likelihood that supercooled water may be encountered in regions of clouds.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3