Microwave Emission Brightness Temperature Histograms (METH) Rain Rates for Climate Studies: Remote Sensing Systems SSM/I Version-6 Results

Author:

Chiu Long S.1,Chokngamwong Roongroj2

Affiliation:

1. Institute of Space and Earth Information Science, Chinese University of Hong Kong, Hong Kong, China, and Center for Earth Observing and Space Research, George Mason University, Fairfax, Virginia

2. Institute of Space and Earth Information Science, Chinese University of Hong Kong, Hong Kong, China

Abstract

Abstract A satellite microwave emission brightness temperature histograms (METH) technique has been applied to Special Sensor Microwave Imager (SSM/I) data taken on board the Defense Meteorological Satellite Program (DMSP) satellites and preprocessed by Remote Sensing Systems (RSS) Co. to produce 21 yr (July 1987–present) of oceanic rainfall products. These rain products are used as input to the Global Precipitation Climatology Project (GPCP) rain maps. Analysis of the METH product using SSM/I version-4 (V4) data shows jumps in vertically polarized 19-GHz brightness temperatures that are attributed to changes in DMSP satellites. A version-6 (V6) SSM/I that corrects for intersatellite differences was released by RSS in 2006. The jumps in the time series are reduced, with most of the changes occurring in the early part of the DMSP F13 data. The bias between RSS V6 and V4 of brightness temperature at 19 and 22 GHz is less than 0.5 K. METH rain rates were reprocessed using V6 data and were analyzed. The 20-yr global mean difference between the METH V4 and V6 is less than 0.3%, with differences as large as 3% in individual years. Trend analyses show increases in the oceanic rain belts, such as the intertropical convergence zone and the South Pacific convergence zone, and in the Bay of Bengal. These rain-rate trends, from both linear trend analysis and empirical mode decomposition analysis, are comparable to the version-2 GPCP analyses but are smaller than those found in the unified microwave ocean retrieval algorithm.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3