Observational Study of Wind Channeling within the St. Lawrence River Valley

Author:

Carrera Marco L.1,Gyakum John R.1,Lin Charles A.1

Affiliation:

1. McGill University, Montreal, Quebec, Canada

Abstract

Abstract The presence of orography can lead to thermally and dynamically induced mesoscale wind fields. The phenomenon of channeling refers to the tendency for the winds within a valley to blow more or less parallel to the valley axis for a variety of wind directions above ridge height. Channeling of surface winds has been observed in several regions of the world, including the upper Rhine Valley of Germany, the mountainous terrain near Basel, Switzerland, and the Tennessee and Hudson River Valleys in the United States. The St. Lawrence River valley (SLRV) is a primary topographic feature of eastern Canada, extending in a southwest–northeast direction from Lake Ontario, past Montreal (YUL) and Quebec City (YQB), and terminating in the Gulf of St. Lawrence. In this study the authors examine the long-term surface wind climatology of the SLRV and Lake Champlain Valley (LCV) as represented by hourly surface winds at Montreal, Quebec City, and Burlington, Vermont (BTV). Surface wind channeling is found to be prominent at all three locations with strong bidirectionalities that vary seasonally. To assess the importance of the various channeling mechanisms the authors compared the joint frequency distributions of surface wind directions versus 925-hPa geostrophic wind directions with those obtained from conceptual models. At YUL, downward momentum transport is important for geostrophic wind directions ranging from 240° to 340°. Pressure-driven channeling is the dominant mechanism producing northeasterly surface winds at YUL. These northeasterlies are most prominent in the winter, spring, and autumn seasons. At YQB, pressure-driven channeling is the dominant physical mechanism producing channeling of surface winds throughout all seasons. Of particular importance, both YUL and YQB exhibit countercurrents whereby the velocity component of the wind within the valley is opposite to the component above the valley. Forced channeling was found to be prominent at BTV, with evidence of diurnal thermal forcing during the summer season. Reasons for the predominance of pressure-driven channeling at YUL and YQB and forced channeling at BTV are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3