Radiative Impacts of Free-Tropospheric Clouds on the Properties of Marine Stratocumulus

Author:

Christensen Matthew W.1,Carrió Gustavo G.1,Stephens Graeme L.2,Cotton William R.1

Affiliation:

1. Colorado State University, Fort Collins, Colorado

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

Abstract Observations from multiple satellites and large-eddy simulations (LESs) from the Regional Atmospheric Modeling System (RAMS) are used to determine the extent to which free-tropospheric clouds (FTCs) affect the properties of stratocumulus. Overlying FTCs decrease the cloud-top radiative cooling in stratocumulus by an amount that depends on the upper-cloud base altitude, cloud optical thickness, and abundance of moisture between the cloud layers. On average, FTCs increase the downward longwave radiative flux above stratocumulus clouds (at 3.5 km) by approximately 30 W m−2. As a consequence, this forcing translates to a relative decrease in stratocumulus cooling rates by about 20%. Overall, the reduced cloud-top radiative cooling decreases the turbulent mixing, vertical development, and precipitation rate in stratocumulus clouds at night. During the day these effects are greatly reduced because the overlying clouds shade the stratocumulus from strong solar radiation, thus reducing the net radiative effect by the upper cloud. Differences in liquid water path are also observed in stratocumulus; however, the response is tied to the diurnal cycle and the time scale of interaction between the FTCs and the stratocumulus. Radiative effects by FTCs tend to be largest in the midlatitudes where the clouds overlying stratocumulus tend to be more frequent, lower, and thicker on average. In conclusion, changes in net radiation and moisture brought about by FTCs can significantly affect the dynamics of marine stratocumulus and these processes should be considered when evaluating cloud feedbacks in the climate system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3