Tropical Outgoing Longwave Radiation and Longwave Cloud Forcing Diurnal Cycles from CERES

Author:

Taylor Patrick C.1

Affiliation:

1. Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Abstract

Abstract The diurnal cycle is a fundamental earth system variability driven by daily variations in solar insolation. Understanding diurnal variability is important for characterizing top-of-atmosphere and surface energy budgets. Climatological and seasonal first diurnal cycle harmonics of outgoing longwave radiation (OLR) and longwave cloud forcing (LWCF) are investigated using the Clouds and the Earth’s Radiant Energy System (CERES) synoptic 3-hourly data. A comparison with previous studies indicates generally similar results. However, the results indicate that the CERES OLR diurnal cycle amplitudes are 10%–20% larger in desert regions than previous analyses. This difference results from the temporal interpolation technique overestimating the daily maximum OLR. OLR diurnal cycle amplitudes in other tropical regions agree with previous work. Results show that the diurnal maximum and minimum OLR variability contributes equally to the total OLR variance over ocean; however, over land the diurnal maximum OLR variance contributes at least 50% more to the total OLR variability than the minimum OLR. The differences in maximum and minimum daily OLR variability are largely due to differences in surface temperature standard deviations at these times, about 5–6 and 3–4 K, respectively. The OLR variance at diurnal maximum and minimum is also influenced by negative and positive correlations, respectively, between LWCF and clear-sky OLR. The anticorrelation between LWCF and clear-sky OLR at diurnal OLR maximum indicates smaller cloud fractions at warmer surface temperatures. The relationship between LWCF and clear-sky OLR at diurnal minimum OLR appears to result from a preference for deep convection, more high clouds, and larger LWCF values to occur with warmer surface temperatures driving a narrower diurnal minimum OLR distribution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3