A New Mechanism of Droplet Size Distribution Broadening during Diffusional Growth

Author:

Korolev Alexei1,Pinsky Mark2,Khain Alex2

Affiliation:

1. Cloud Physics and Severe Weather Research Section, Environment Canada, Toronto, Ontario, Canada

2. Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract

Abstract A new mechanism has been developed for size distribution broadening toward large droplet sizes. This mechanism may explain the rapid formation of large cloud droplets, which may subsequently trigger precipitation formation through the collision–coalescence process. The essence of the new mechanism consists of a sequence of mixing events between ascending and descending parcels. When adiabatically ascending and descending parcels having the same initial conditions at the cloud base arrive at the same level, they will have different droplet sizes and temperatures, as well as different supersaturations. Isobaric mixing between such parcels followed by further ascents and descents enables the enhanced growth of large droplets. The numerical simulation of this process suggests that the formation of large 30–40-μm droplets may occur within 20–30 min inside a shallow adiabatic stratiform layer. The dependencies of the rate of the droplet size distribution broadening on the intensity of the vertical fluctuations, their spatial amplitude, rate of mixing, droplet concentration, and other parameters are considered here. The effectiveness of this mechanism in different types of clouds is discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds;Baker;J. Atmos. Sci.,1979

2. On the dispersion of the sizes of droplets growing by condensation in turbulent clouds;Bartlett;Quart. J. Roy. Meteor. Soc.,1972

3. Warm-rain initiation: An overview of microphysical mechanisms;Beard;J. Appl. Meteor.,1993

4. Drop-size distribution in a cloud during the condensation stage of development;Belyaev,1961

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3