Numerical Simulations of Waves over Large Crater Topography in the Atmosphere

Author:

Soontiens Nancy1,Stastna Marek1,Waite Michael L.1

Affiliation:

1. Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Abstract Numerical simulations are used to investigate waves generated by flow over crater topography of diameter 100 km in an idealized atmosphere. The atmosphere is stratified with a constant buoyancy frequency profile and the background wind is constant. This study describes the development of a low-level jet along the upstream crater slope and its interaction with the cooler air within the crater valley. This interaction results in a hydraulic jump–like structure that acts as a modified topography, forcing a beam of secondary waves. The hydraulic jump is formed by a retreating gravity current as the cool air within the crater readjusts after the initial tilting of potential temperature contours. A two-dimensional simulation is used to compare features such as wave overturning in two and three dimensions. Several variations on the atmosphere’s profile are considered, including an atmosphere with reduced constant stratification and an atmosphere that is unstratified within the crater. These results indicate that the stratification within the crater is an important component in the development of the hydraulic jump. Also, several topographic modifications are included, such as a crater with no rims and a crater with reduced diameter. These comparisons reveal that the crater rims have little impact on the general wave pattern and that the crater curvature can influence wave breaking and lateral deflections. In addition, cases with rotation break the symmetry and induce more overturning in one-half of the crater.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3