Affiliation:
1. National Center for Atmospheric Research,* Boulder, Colorado
Abstract
Abstract
Previous studies have observed upstream-propagating modes in two-dimensional numerical simulations of idealized flow over topography with moist, nearly neutral conditions in the troposphere, topped by a stable stratosphere. The generation and propagation mechanisms for these modes were attributed to localized and dramatic changes in stability induced by the desaturation of the flow impinging on the mountain. In the present paper it is shown that these modes are transient upstream-propagating gravity waves, which are a fundamental feature of both moist and dry flow over topography of a two-layer troposphere–stratosphere atmospheric profile impulsively started from rest. The mode selection and propagation speeds of these transient waves are highly dependent on the tropospheric stability, as well as the wind speed and tropopause depth. In the moist case these modes appear to propagate according to an effective static stability that is intermediate to the normal dry stability and the lower moist stability. Comparisons with the linear, time-dependent, hydrostatic analytic solution show that these modes are similar to the transients observed in flow of a constant wind and stability layer over topography with a rigid upper boundary.
Publisher
American Meteorological Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献