Effect of Aerosol on Cloud–Environment Interactions in Trade Cumulus

Author:

Lee Seoung-Soo1,Feingold Graham2,Chuang Patrick Y.3

Affiliation:

1. NOAA/Earth System Research Laboratory/Chemical Sciences Division, and CIRES, University of Colorado, Boulder, Colorado

2. NOAA/Earth System Research Laboratory/Chemical Sciences Division, Boulder Colorado

3. Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, California

Abstract

Abstract This study examines the role of aerosol in mediating interactions between a warm trade cumulus cloud system and the environment that spawns it. Numerical simulations of the observed and well-studied Rain in Cumulus over the Ocean (RICO) field experiment are performed. The results draw on simulations of 34-h duration so as to avoid conclusions based on transients. Simulations show that, on average, aerosol-perturbed clouds are initially deeper and more vigorous but that after about 14 h there is a reversal in this trend, and unperturbed clouds deepen relative to the perturbed clouds. Differences in cloud depth are about 100 m, and differences in vertical velocity variance are about 30%. After about 20 h, most cloud fields are statistically similar with the exception of rain rate and optical depth, which are lower and higher, respectively, in the high-aerosol conditions. By sampling the model output at various points in the cloud system evolution, the mechanisms responsible for the initial differences and then convergence of most of the cloud field properties are addressed. Sensitivity tests indicate that responses are driven primarily by temperature profiles, rather than by humidity profiles, and that the general trend to homogenization of the bulk cloud field properties is robust for different forcings. Finally, the paper shows that even transient aerosol perturbations may endure beyond the duration of the perturbation itself, provided they persist long enough. Short-duration aerosol perturbations are unlikely to have much influence on the system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3