Disagreements in Low-Level Moisture between (Re)Analyses over Summertime West Africa

Author:

Roberts Alexander J.1,Marsham John H.1,Knippertz Peter2

Affiliation:

1. School of Earth and Environment, University of Leeds, Leeds, United Kingdom

2. Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karslruhe, Germany

Abstract

Abstract Reanalysis and operational analysis products are routinely used as the best estimates of the atmospheric state for operational and research purposes. However, different models, assimilation techniques, and assimilated datasets lead to differences between products. Here, such differences in the distribution of low-level water vapor over summertime West Africa are analyzed, as reflected in the zonal mean position of the leading edge of the West African monsoon [the intertropical discontinuity (ITD)] using five reanalyses [NCEP–NCAR, NCEP–Department of Energy (DOE), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), the Climate Forecast System Reanalysis (CFSR), and the Interim ECMWF Re-Analysis (ERA-Interim)] and two operational analyses [Global Forecast System (GFS) and ECMWF] during the 11 monsoon seasons (April–September) from 2000 to 2010. Specific humidity differences regularly reach 50% of the mean value over areas spanning hundreds of kilometers and often coincide with northward excursions of the ITD that last several days and bring unusual rainfall to the Sahel and Sahara. The largest disagreements occur during the southward retreat of the ITD and are connected with anomalously high values of aerosol optical depth, consistent with the production of haboob dust storms. The results suggest that known errors in the representation of moist convection and cold pools may contribute to the identified disagreements. A large reduction in disagreement occurs in 2006, when upper-air observations were enhanced during the African Monsoon Multidisciplinary Analysis (AMMA) campaign, pointing to an insufficient observational constraint of the (re)analyses in other years. It is hoped that this work will raise awareness of the limited reliability of (re)analysis products over West Africa during the summer, particularly during northward surges of the ITD, and will instigate further work to improve their quality.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3