The Quasigeostrophic Omega Equation: Reappraisal, Refinements, and Relevance

Author:

Davies Huw C.1

Affiliation:

1. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract

Abstract A two-component study is undertaken of the classical quasigeostrophic (QG) omega equation. First, a reappraisal is undertaken of extant formulations of the equation’s so-called forcing function. It pinpoints shortcomings of various formulations and prompts consideration of alternative forms. Particular consideration is given to the contribution of flow deformation to the forcing function, and to the role of the advection of the geostrophic flow by the thermal wind (the R vector). The latter is closely related to the Q vector, the horizontal component of the ageostrophic vorticity, and the forcing function itself. The reexamination promotes further examination of the physical interpretation and diagnostic use of the omega equation particularly for assessing richly structured subsynoptic flow features. Second, consideration is given to the dynamics associated with the equation and its more general utility. It is shown that the R vector is intrinsic to a quasigeostrophic cascade to finer-scaled flow, and that a fundamental feature of the QG omega equation—the in-phase relationship between cloud-diabatic heating and the attendant vertical velocity—has important potential ramifications for the assimilation of data in numerical weather prediction (NWP) models. Finally, it is shown that, in the context of considering NWP model output, mild generalizations of the quasigeostrophic R vector retain interpretative value for flow settings beyond geostrophy and warrant consideration when addressing some contemporary NWP challenges.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3