Affiliation:
1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
Abstract
Abstract
A series of numerical experiments are conducted to examine the impact of surface observations on the prediction of landfalls of Hurricane Katrina (2005), one of the deadliest disasters in U.S. history. A specific initial time (0000 UTC 25 August 2005), which led to poor prediction of Hurricane Katrina in several previous studies, is selected to begin data assimilation experiments. Quick Scatterometer (QuikSCAT) ocean surface wind vectors and surface mesonet observations are assimilated with the minimum central sea level pressure and conventional observations from NCEP into an Advanced Research version of the Weather Research and Forecasting Model (WRF) using an ensemble Kalman filter method. Impacts of data assimilation on the analyses and forecasts of Katrina’s track, landfalling time and location, intensity, structure, and rainfall are evaluated. It is found that the assimilation of QuikSCAT and mesonet surface observations can improve prediction of the hurricane track and structure through modifying low-level thermal and dynamical fields such as wind, humidity, and temperature and enhancing low-level convergence and vorticity. However, assimilation of single-level surface observations alone does not ensure reasonable intensity forecasts because of the lack of constraint on the mid- to upper troposphere. When surface observations are assimilated with other conventional data, obvious enhancements are found in the forecasts of track and intensity, realistic convection, and surface wind structures. More importantly, surface data assimilation results in significant improvements in quantitative precipitation forecasts (QPFs) during landfalls.
Publisher
American Meteorological Society
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献