Automated Satellite-Based Landslide Identification Product for Nepal

Author:

Fayne Jessica V.1,Ahamed Aakash2,Roberts-Pierel Justin3,Rumsey Amanda C.4,Kirschbaum Dalia5

Affiliation:

1. Department of Geography, University of California, Los Angeles, Los Angeles, California

2. Department of Geophysics, Stanford University, Stanford, California

3. Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina

4. Department of Geography, U.S. Census Bureau, Suitland, Maryland

5. Hydrologic Sciences Laboratory, Code 617, NASA Goddard Space Flight Center Greenbelt, Maryland

Abstract

Abstract Landslide event inventories are a vital resource for landslide susceptibility and forecasting applications. However, landslide inventories can vary in accuracy, availability, and timeliness as a result of varying detection methods, reporting, and data availability. This study presents an approach to use publicly available satellite data and open-source software to automate a landslide detection process called the Sudden Landslide Identification Product (SLIP). SLIP utilizes optical data from the Landsat-8 Operational Land Imager sensor, elevation data from the Shuttle Radar Topography Mission, and precipitation data from the Global Precipitation Measurement mission to create a reproducible and spatially customizable landslide identification product. The SLIP software applies change-detection algorithms to identify areas of new bare-earth exposures that may be landslide events. The study also presents a precipitation monitoring tool that runs alongside SLIP called the Detecting Real-Time Increased Precipitation (DRIP) model that helps to identify the timing of potential landslide events detected by SLIP. Using SLIP and DRIP together, landslide detection is improved by reducing problems related to accuracy, availability, and timeliness that are prevalent in the state of the art for landslide detection. A case study and validation exercise in Nepal were performed for images acquired between 2014 and 2015. Preliminary validation results suggest 56% model accuracy, with errors of commission often resulting from newly cleared agricultural areas. These results suggest that SLIP is an important first attempt in an automated framework that can be used for medium-resolution regional landslide detection, although it requires refinement before being fully realized as an operational tool.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3