The role of storm movement in controlling flash flood response: an analysis of the 28 September 2012 extreme event in Murcia, southeastern Spain

Author:

Amengual A.1,Borga M.2,Ravazzani G.3,Crema S.4

Affiliation:

1. 1 Grup de Meteorologia, Departament de Física, Universitat de les Illes Balears, Palma, Mallorca, Spain.

2. 2 Gruppo di Idrologia Fisica, Dipartimento del Territorio e Sistema Agro-Forestali, Università degli Study di Padova, Padova, Italy.

3. 3 Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy

4. 4 Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, Padova, Italy

Abstract

AbstractFlash flooding is strongly modulated by the spatial and temporal variability in heavy precipitation. Storm motion prompts a continuous change of rainfall space-time variability that interacts with the drainage river system, thus influencing the flood response. The impact of storm motion on hydrological response is assessed for the 28 September 2012 flash flood over the semi-arid and medium-sized Guadalentín catchment in Murcia, southeastern Spain. The influence of storm kinematics on flood response is examined through the concept of ‘catchment-scale storm velocity’. This variable quantifies the interaction between the storm system motion and the river drainage network, assessing its influence on the hydrograph peak. By comparing two hydrological simulations forced by rainfall scenarios of distinct spatial and temporal variability, the role of storm system movement on the flood response is effectively isolated. This case study is the first to: (i) show through the catchment-scale storm velocity how storm motion may strongly affect flood peak and timing; and (ii) assess the influence of storm kinematics on hydrological response at different basin scales. In the end, this extreme flash flooding provides a valuable case study of how the interaction between storm motion and drainage properties modulate hydrological response.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3